There’re many problems in this world that you have no idea how to solve in a perfect way, but you can at least give it an okay solution. Like, say, how to cook, or how to run. As long as it’s a computational problem, and possible to quantitatively define a score to the ideal state, that’s probably where an evolutionary algorithm comes in.
The key idea of an evolutionary algorithm, often the case with a genetic algorithm as well, is to evaluate the loss of parameter(s) and iterate doing it. And between each iteration, you want to tweak your parameters a little bit. Sometimes you can add random factors, too. Repeating iterations will hopefully lead you to a heuristic solution.
You’re strongly recommend that you plot the loss of your computation so that you can find where to stop it, otherwise your computer will be working for days or weeks.
Here’s how I code to a test problem that is placing circles homogenously in a given area. The dependencies of libraries are not so many because it’s simple enough to write the code from scratch.
And below is the plot of the progress of finding the solution. Where to stop is subject to the project’s resources such as your time or your computational capability.
from PIL import Image, ImageOps, ImageDraw, ImageGrab import numpy as np import random, copy, math, time import matplotlib.pyplot as plt # consts fn_image = 'test.png' c_scatter = 0.005 gen = 1200 radius = 14 c_overlap = 0.675 fn_mask = 'mask64.png' n_ga_unit = 40 step = 4 n_move = 5 # bounding box around the flood-filled area def bbox(im): im = np.array(im) sum_row = im.sum(axis=0) sum_col = im.sum(axis=1) idx_row = np.where(sum_row>0) idx_col = np.where(sum_col>0) left = idx_row[0].min() right = idx_row[0].max() top = idx_col[0].min() bottom = idx_col[0].max() return (left, top, right, bottom) def crossover(a, b, idx): return (a[:idx]+b[idx:], b[:idx]+a[idx:]) im = Image.open(fn_image) im = im.convert('L') objective_size = np.asarray(im).sum() n_iter = int(c_scatter * objective_size) bb = bbox(im) mask = Image.open(fn_mask).convert('L') # greyscale score_perfect = np.asarray(mask).sum() score_threshold = int(score_perfect * c_overlap) mask = ImageOps.invert(mask) black = Image.fromarray(np.reshape(np.zeros(mask.width * mask.height), [mask.width, -1])) def score(render, x, y, r): im_crop = render.crop((x-r, y-r, x+r, y+r)) output = ImageOps.fit(im_crop, mask.size, centering=(0.5, 0.5)) output.paste(black, (0, 0), mask) ar = np.asarray(output) return (output, ar.sum()) class GAUnit: def __init__(self, size): self.mod = [None] * size for i in range(n_move): idx = random.randrange(size) self.mod[idx] = random.random()*2*math.pi def evolve_rand(self): size = len(self.mod) self.mod = [None] * size for i in range(n_move): idx = random.randrange(size) self.mod[idx] = random.random()*2*math.pi def evolve(self): if random.random() < 0.5: self.evolve_rand() else: for r in self.mod: if r is not None: r += random.random() - 0.5 #-0.5 <-> 0.5 def calc_score(self, render, x, y): draw = ImageDraw.Draw(render) for i in range(len(x_plot)): draw.ellipse((x[i]-radius, y[i]-radius, x[i]+radius, y[i]+radius), fill='black') self.score = np.asarray(render).sum() return render def iteration(parent, second, third): n_crossover = 5 crossovers = [copy.copy(parent)] * n_crossover crossovers[1].mod, crossovers[2].mod = crossover(parent.mod, second.mod, random.randrange(len(parent.mod))) crossovers[3].mod, crossovers[4].mod = crossover(parent.mod, third.mod, random.randrange(len(parent.mod))) units = [] for i in range(n_ga_unit-n_crossover): u = copy.copy(parent) u.evolve() units.append(u) units = crossovers + units for u in units: xx = copy.copy(x_plot) yy = copy.copy(y_plot) for j,deg in enumerate(u.mod): if deg is not None: xx[j] += step * math.cos(deg) yy[j] += step * math.sin(deg) u.calc_score(im.copy(), xx, yy) units.sort(key=lambda x: x.score) best = units[0] second = units[1] third = units[2] if best.score < parent.score: for j, deg in enumerate(best.mod): if deg is not None: x_plot[j] += step * math.cos(deg) y_plot[j] += step * math.sin(deg) return (best, second, third) # initial plot positions by random x_plot = [] y_plot = [] render = im.copy() draw = ImageDraw.Draw(render) for i in range(n_iter): w_bbox = bb[2] - bb[0] h_bbox = bb[3] - bb[1] x_try = bb[0] + random.randrange(w_bbox) y_try = bb[1] + random.randrange(h_bbox) (output, s) = score(render, x_try, y_try, radius) if s > score_threshold: x_plot.append(x_try) y_plot.append(y_try) draw.ellipse((x_try-radius, y_try-radius, x_try+radius, y_try+radius), fill='black') # initial parent unit_size = len(x_plot) parent = GAUnit(unit_size) render = parent.calc_score(im.copy(), x_plot, y_plot) base_score = int(parent.score/10000) last_score = base_score scores = None last_score = base_score def update_scores(s): global last_score, scores score_delta = last_score - s if not scores: scores = [0] * 19 scores.append(score_delta) else: scores.append(score_delta) scores.pop(0) last_score = s x = [] start = time.time() best = parent second = parent third = parent for i in range(gen): print('\r{}/{}'.format(i+1, gen), end='') best, second, third = iteration(best, second, third) x.append(best.score) update_scores(int(best.score/10000)) if sum(scores) == 0: step -= 1 if step < 1: step = 1 n_move -= 1 if n_move < 1: n_move = 1 elapsed_time = time.time() - start print() print ("elapsed_time:{0}".format(elapsed_time) + "[sec]") # result renderring render = im.copy() draw = ImageDraw.Draw(render) for j in range(len(x_plot)): draw.ellipse((x_plot[j]-radius, y_plot[j]-radius, x_plot[j]+radius, y_plot[j]+radius), fill='black') render.save('result.png') fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.plot(np.arange(len(x)), np.array(x)) ax.set_title('loss') ax.set_xlabel('epoch') ax.set_ylabel('loss') fig.savefig('loss.png')
And below is the plot of the progress of finding the solution. Where to stop is subject to the project’s resources such as your time or your computational capability.